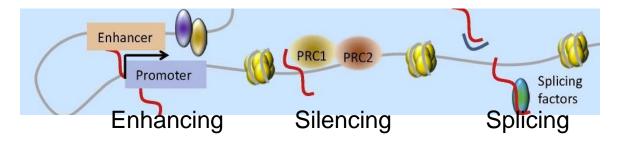


Dysregulation of cell-type specific long ncRNA in the ileum of treatment naïve early onset Crohn Disease

Yael Haberman, MD, PhD Sheba Medical Center, Israel On behalf of the Crohn's & Colitis Foundation (CCF)-sponsored RISK study

Vienna, Feb, 2018

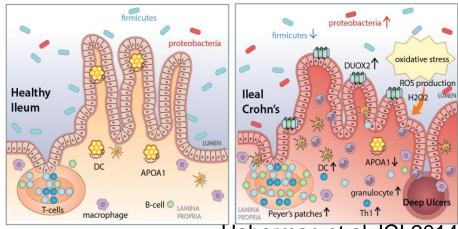
Disclosure of Conflicts of Interest:


Conflict of interest:

Grant funding for this work included ECCO, CCF, ISF, I-Core, and The Leona M. and Harry B. Helmsley Charitable Trust.

IncRNA definitions and known functions

- LncRNA are diverse class of non-protein coding transcripts longer than 200 nucleotides.
- LncRNA are key regulators of gene transcription.


- LncRNAs dynamically regulate the immune system (i.e. Morrbid, Lethe, Lnc-DC).
- Only a few studies to date have focused on IncRNA in human gut pathogenesis, and there have been no studies of the ileum of patients with Crohn Disease.

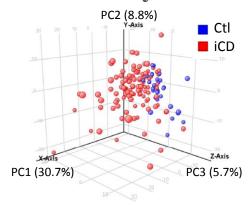
Hypothesis and aim

We defined core inflammatory and metabolic ileal gene signature in treatment naïve pediatric Crohn Disease (CD).

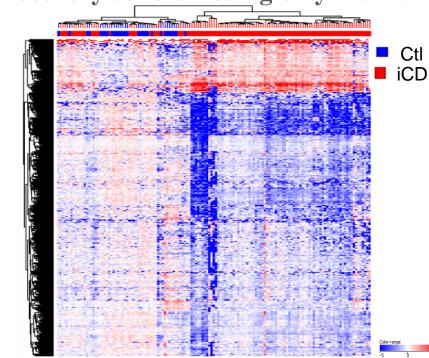
Haberman et al JCI 2014

Our hypothesis is that IncRNA will have tissue specific regulatory role in tuning the inflammatory cascade and epithelial functions in CD pathogenesis

We extend our analyses to define a more comprehensive view of CD pathogenesis that includes IncRNA.



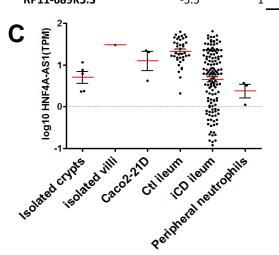
Widespread dysregulation of 459 IncRNA in the ileum of treatment naïve pediatric iCD (L1, L3) patients

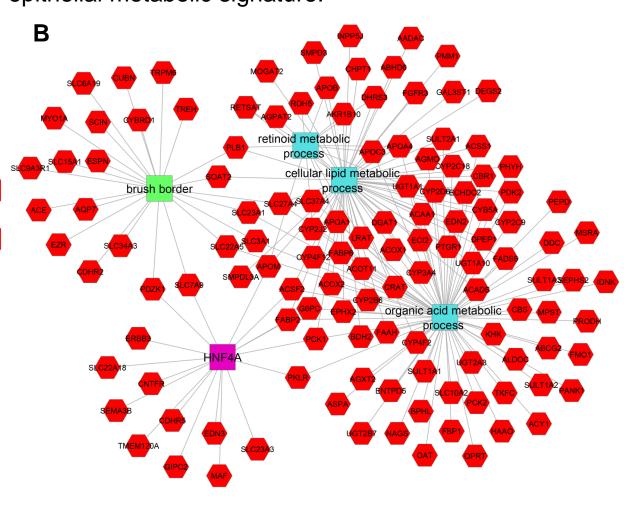

Discovery

	Ctl (n-30)	CD (n=111)
Age (mean, SD)		11.9(3)
Male (%)	60%	61%
PCDAI mild (11-30)	-	39%
PCDAI mod- sev (>=31)	-	53%

Discovery cohort

Discovery cohort – using only lncRNA

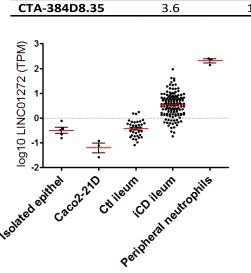

LncRNAs can be utilized to correctly classify disease or healthy states

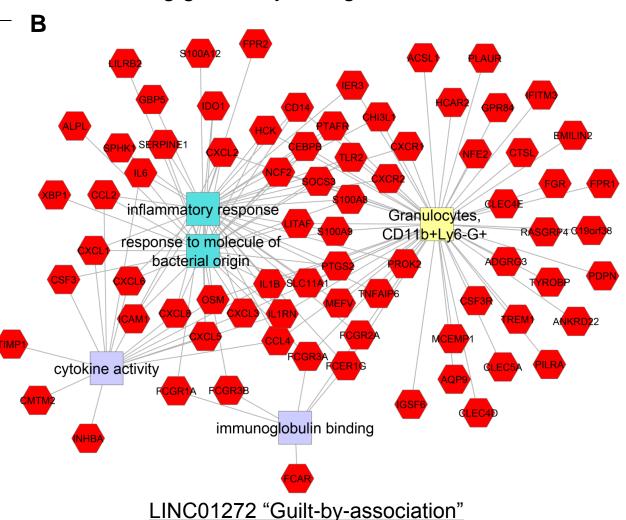

ECCO

Prioritizing the down-regulated IncRNA based on fold change and by using "Guilt-by-association" co expression: top down-regulated CDKN2B-AS1 (ANRIL) & HNF4A-AS1 IncRNAs show strong co-expression with an epithelial metabolic signature.

Α	Top 15 down-regulated IncRNA genes				
	FC [iCD] vs.	Co-			

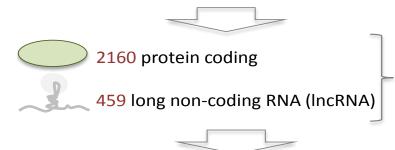
	FC [iCD] vs.	Co-		
	[Ctl])	expression		
RP11-249C24.11	-16.2	1		
RP11-347E10.1	-14.5	105		
RP11-64D22.5	-8.5	6		
FOXD1-AS1	-8.1	1		
LINC01595	-7.9	1		
RP11-132E11.2	-7.3	112		
RP11-116D2.1	-7.0	25		
CDKN2B-AS1	-6.9	365		
RP11-245G13.2	-6.7	1		
RP11-1223D19.1	-6.2	1		
HNF4A-AS1	-5.9	315		
RP11-798K3.2	-5.7	153		
RP11-680F8.1	-5.6	73		
RP3-368B9.2	-5.6	2		
RP11-689K5.3	-5.5	1		

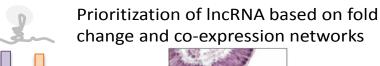


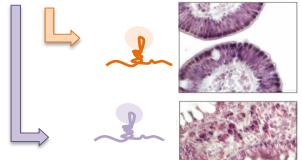

CDKN2B-AS1 "Guilt-by-association" network

Prioritizing the up-regulated IncRNA based on fold change and by using "Guilt-by-association" co expression: the up-regulated LINC01272 is associated with a strong granulocytes signature

^					
4	Top15 up-regulated differentially expressed IncRNA genes				
	Top 15 up-	FC [iCD]	Co-		
	regulated	vs. [Ctl]	expression		
	CTB-61M7.2	12.8	19		
	RP11-598F7.3	11.5	1		
	LUCAT1	10 ጸ	17		
	LINC01272	9.3	116		
	RP11-290L1.3	/.1	1		
	LINC00694	6.4	1		
	CTC-490G23.2	5.9	1		
	RP11-701P16.5	5.8	1		
	LINC01235	5.2	1		
	RP11-638I2.8	4.9	1		
	FAM225A	4.4	46		
	RP11-44K6.2	4.4	1		
	RP11-20G13.2	4.2	1		
	RP11-536O18.1	3.7	1		


network


Conclusions and Future Considerations



Differential expression using RNAseq and GENCODE/Ensembl annotation

Equally and accurately classify Crohn Disease and control samples

Down-regulated IncRNa (i.e. HNF4A-AS1) show epithelial-specific expression and associations with metabolic functions

Up-regulated IncRNA (i.e. *LINCO1272*) show specific myeloid expression and association with myeloid immune activation

We plan to elucidate their molecular mechanisms to provide more comprehensive insights into CD pathogenesis and ultimately lead to novel tissue specific therapies

Acknowledgments

Sheba Medical center

Lab members

- Tzipi Braun
- Ayelet Di segni*
- Gilat Efroni
- Marina BenShoshan*
- Nurit Nachum
- Katia Sosnovski

Collaborators:

Dr. Lee Denson (CCHMC)
RISK cohort site investigators
Sheba pathology lab

Funding

European Crohn's and Colitis Organisation

רשת מחקר ישראלית למחלות מעי דלקתיות

