Supplementation with butyrate-producing bacteria reduces tumour load in a mouse model of colitis-associated cancer

Ana Montalban-Arques, PhD

Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland

14th Congress of ECCO. Copenhagen, March 07.03.2019
Disclosures:

Conflict of interest: None
- **Colitis-associated cancer (CAC)** is a severe complication in inflammatory bowel disease (IBD) patients with colonic involvement.

- Patients with IBD who develop CAC have a **worse prognosis** than those with sporadic colorectal cancer and are frequently diagnosed at an advanced stage.

- In both IBD and CAC there is a detrimental **alteration of the microbiota**.

Aim: Study how gut microbiota contributes to the onset/prevention of CAC
The AOM/DSS Model of Colitis-associated Carcinoma

- **Dextran sulfate sodium (DSS)** treatment induces epithelial damage and inflammation

- **Azoxymethane (AOM)** causes spontaneous DNA mutations

In combination: Colitis-associated tumor induction
Butyrate-producing bacteria protects from tumour development

Increased anti-tumour immune response

- **Tumour tissue**
 - PDL1+ Macrophages
 - IFNγ+CD8+ T cells

- **Non-tumour tissue**
 - B cells

Graphs:
- PBS
- Pepto
- Butyrate

Legend:
- PBS
- Pepto
- Butyrate

AOM/DSS:
- WT
- Rag/−

Weeks:
1 2 3 4 5 6 7 8 9 10
Colitis-associated tumour development depends on microbiota.

Oral supplementation with butyrate-producing bacteria reduces tumour load in the colitis-associated cancer model.

Butyrate producing bacteria promotes an increased anti-tumor immune response.

Manipulation of the intestinal microbiota might be a promising novel therapy in the treatment of colitis-associated cancer.
Acknowledgements

IBD Research Group USZ

Michael Scharl
Marianne Spalinger
Ivan Olivares Rivas
Egle Katkeviciute
Kirstin Atrott
Marlene Schwarzfischer
Katharina Bäbler
Philipp Busenhart
Larissa Hering

Tomas De Wouters
Laura Berchtold
Carmen Menzi

Gabriel E. Leventhal

UniversitätsSpital Zürich

Universität Zürich UZH