

The regulatory landscape of intestinal cells

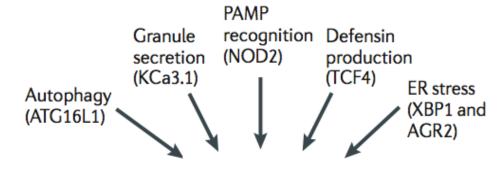
Investigating the transcriptional effect of autophagy impairment observed in Crohns disease using organoid and network biology approaches

Agatha Treveil, March 06 2019

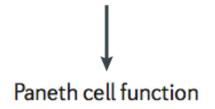
Disclosures:

Conflict of interest:

 Grants and personal fees: Biotechnology and Biological Sciences Research Council (UK), during the conduct of the study

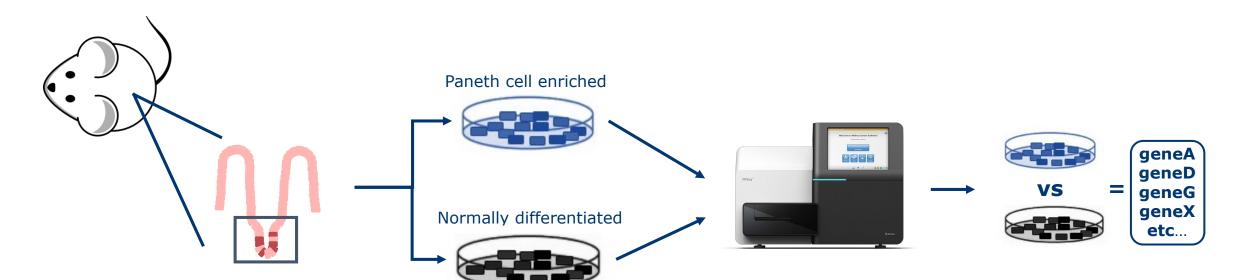


Paneth cells in gut health


Antimicrobial peptides

CD susceptibility genes

Paneth cell specific regulatory pathways



Aims:

- 1. Develop a workflow to study the regulatory mechanisms of key gut secretory cells (incl. Paneth cells).
- 2. Apply workflow to study:
 - a. Regulatory differences between cell types
 - b. How regulatory mechanisms are altered in particular genetic backgrounds

Workflow 1/2: data generation

Extraction of small intestinal crypts

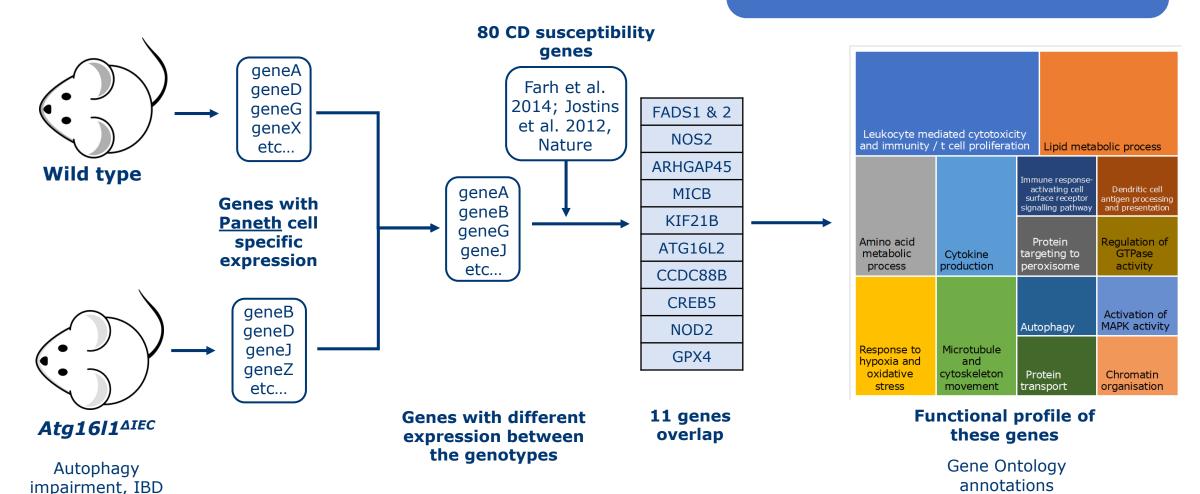
Wild type mice

3D organoid differentiation & enrichment

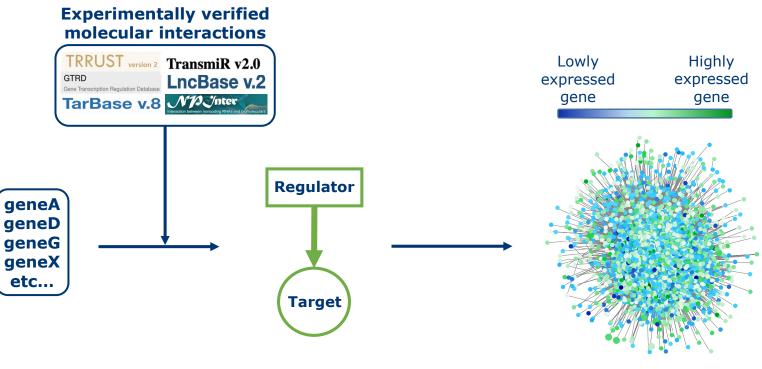
Whole organoid RNA sequencing

miRNA, mRNA & IncRNA expression profiling

Differential expression testing


Outputs list of genes with Paneth cell specific expression

association


Autophagy impairment

Autophagy impairment can affect the expression of a number of Crohns associated genes, even when not mutated.

Workflow 2/2: data analysis

Differentially expressed genes

Identify regulator -> target interactions

Transcription factors, IncRNAs and miRNAs

Combine into cell-type specific regulatory network

Paneth cell regulatory network:

37,062 interactions 208 regulators 3,023 targets

Putative master regulators:

Ets1 Cebpa Jun Nr1ai Nr3c1 Rxra Vdr

Nuclear hormone receptors with connections to inflammation, autophagy and IBD

Summary + Future

- Novel & reusable workflow to generate cell type specific regulatory networks. Can be applied to:
 - Different cell types
 - Different genetic backgrounds

- Workflow improvements:
 - Fluorescence-activated cell sorting (FACS) instead of cell type enrichment of organoids
 - Apply the workflow to patient derived organoids (Quadram Institute)

Acknowledgements

The Korcsmaros Group:
Tamas Korcsmaros
Padhmanand
Sudhakar
Emily Jones (alumni)
Isabelle Hautefort

Dezso Modos (alumni)
Jo Brooks
David Fazekas
Mate Szalay-Beko
Amanda Demeter
Marton Olbei
Leila Gul
Matthew Madgwick
Martina Poletti
Elena Rodiguez

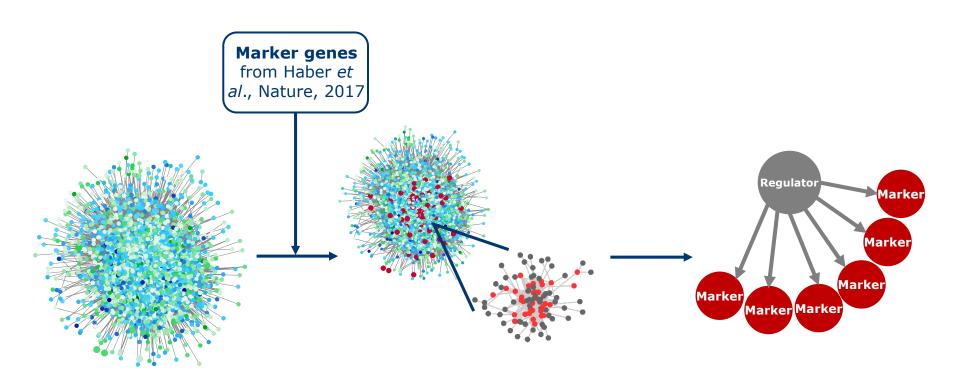
Tomasz Wrzesinski Wilfried Haerty Frederica Di Palma

The Hall Group: Lindsay Hall

Ian O'Neill Lukas Harnisch (alumni) And all the rest

Simon Carding **Devina Divekar**

Penny Powell Tom Wileman Zoe Matthews


norwich research park

Doctoral Training Partnership

Further analysis: master regulators

Cell-type specific regulatory network

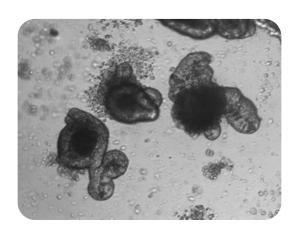
Extract cell-type specific marker genes and their regulators

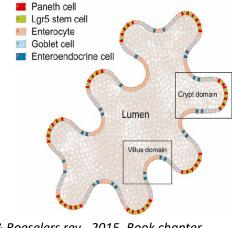
Observe regulators with many targets

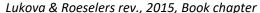
Putative master regulators of the cell type

Paneth cell putative master regulators:

Ets1
Cebpa
Jun
Nr1d1
Nr3c1


Nuclear hormone receptors with connections to inflammation, autophagy and IBD


Rxra



Organoids

• Tiny, self-organized three-dimensional tissue cultures that are derived from stem cells.

Putative master regulators

Putative master regulator	Autophagy-inflammation-IBD associations	References	
NR1D1 (REV-ERBa)	Modulates autophagy and lysosome biogenesis in macrophages leading to antimycobacterial effects		
	SNP rs12946510 which has associations to IBD, acts as a cis-eQTL for NR1D1	Mirza et al. 2015	
NR3C1 (glucocorticoid receptor)	Associations with cellular proliferation and anti-inflammatory responses	Oakley and Cidlowski, 2013	
	Exogenous glucocorticoids are heavily used as anti-inflammatory therapy for IBD	Rutgeerts 1998; Prantera and Marconi 2013	
	ATG16L1, an autophagy related gene, was down-regulated in patients who do not respond to glucocorticoid treatment	De Iudicibus et al. 2011; Dubois-Camacho et al. 2017	
	Transcriptionally regulates NFK $\beta1$, a SNP affected gene in ulcerative colitis	Yemelyanov et al. 2007; Dinkel et al. 2016; Han et al. 2018	
VDR (Vitamin D Receptor)	Regulates autophagy in Paneth cells through ATG16L1 – dysfunction of autophagy in Paneth cells has been linked to Crohn's disease	Sun 2016; Bakke et al. 2018	
	Induces antimicrobial gene expression in other cell lines	Wang et al. 2004; Gombart et al. 2005	
	specific polymorphisms in the VDR genes have been connected to increased susceptibility to IDB	Pei et al. 2011	
	A study looking at colonic biopsies of IBD patients observed reduced VDR expression compared to healthy biopsies	Abreu et al. 2004	
	Interacts with five SNP affected UC genes	Bovolenta et al. 2012; Lesurf et al. 2016; Dinkel et al. 2016; Han et al. 2018	
RXRa (Retinoid X Receptor Alpha)	Heterodimerizes with VDR (see above)		

Other putative master regulators

• Ets1

- Proto oncogene DNA synthesis and damage repair
- Important role in the development of hematopoietic cells and Th1 inflammatory responses (Grenningloh et al. 2005)
- IBD associated gene (Konno et al., 2004; Li et al, 2018)

Cebpa

Transcription factor involved in the differentiation of certain blood cells.

Jun

- Proto-oncogene
- Associated with apoptosis

Atg16l1 analysis

- Atg16l1
 - Paneth cell dysfunction
 - Autophagy defects
 - Reduced Amp secretion
 - Aberrant granule size, number and location
- Crohns genes
 - 3040 genes different between genotypes (64%)
 - 11/80 Crohns genes found in our dataset hypergeometric p val = 0.0857

Genes

FADS1 & 2

NOS2

ARHGAP45

MICB

KIF21B

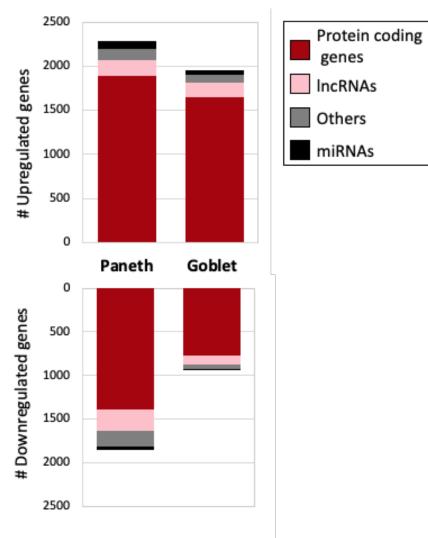
ATG16L2

CCDC88B

CREB5

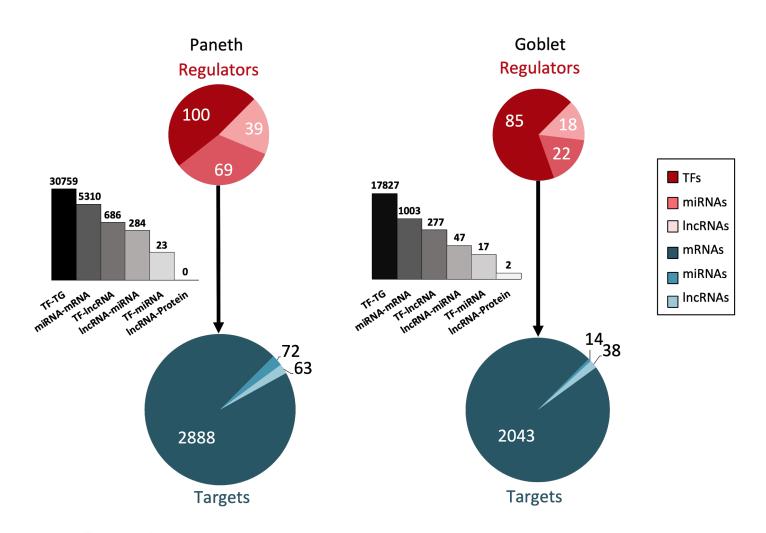
NOD2

GPX4



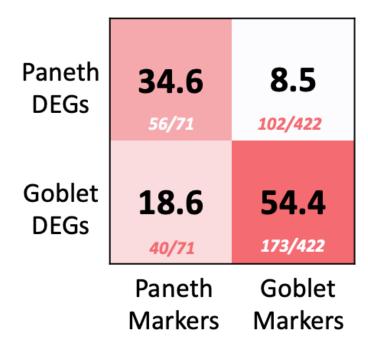
A summary of the physical interactions compiled to generate the background network.

Interaction type	Source(s)	Number of unique interactions	Quality control criteria
TF-TG	TRRUST v2 GTRD	1066383	ChIP-Seq peaks should not overlap any gene annotation; if peak on + strand, only the first gene downstream to the gene or if peak on - strand, only first gene upstream to the peak is considered.
TF-IncRNA	GTRD	159055	ChIP-Seq peaks should not overlap any gene annotation; if peak on + strand, only the first gene downstream to the gene or if peak on - strand, only first gene upstream to the peak is considered.
miRNA-mRNA	TarBase v7.0	141892	Only HITS-CLIP based experimental evidence considered
TF-miRNA	TransmiR v1.2 TRRUST v2 GTRD	9204	ChIP-Seq peaks should not overlap any gene annotation; if peak on + strand, only the first gene downstream to the gene or if peak on - strand, only first gene upstream to the peak is considered.
IncRNA - miRNA	IncBase2	6637	Only HITS-CLIP based experimental evidence considered
IncRNA - protein	NPINTER v3.0	725	Only physical interactions considered; interactions involving RNA binding proteins removed


Number of differentially expressed genes.

Differential expression was defined as log2 fold change > |1| and false discovery rate <= 0.05. Goblet = goblet enriched organoids compared to normally differentiated; Genes annotated as 'other' include pseudogenes and antisense genes.

Composition of regulatory networks

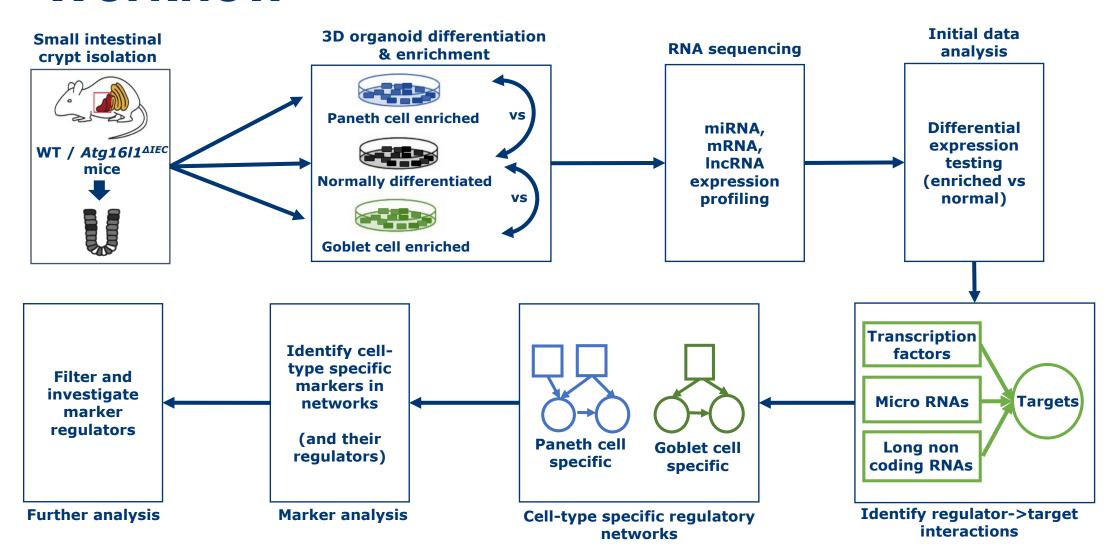


All regulators in the networks are shown in the red circles, and all targets in the blue circles.

In black bar charts are the types of regulatory interactions, most of which are transcription factor target gene interactions.

Hypergeometric distribution significance score (-log10(corrected p value))

0 55


Enrichment of cell-type specific marker genes in the differentially expressed gene (DEG) lists.

Higher significance scores indicate greater enrichment. Number of markers in DEG list out of total number of markers shown below significance score.

Workflow

