Drugs that modulate histone acetylation disrupt TGFβ signaling and reduce collagen I expression in models of stricturing Crohn’s disease

A. Lewis, A. Nijhuis, G. Berti, C. Felice, R. Jeffrey, S. Iqbal, A. B. Pomeranc, S. Aldelemi, S. Mehta, E. Giannoulatou, R. Feakins, A. Armuzzi, J. O. Lindsay, A. Silver

Speaker: Amy Lewis Ph.D.
Copenhagen, 08-03-19
Disclosures:

Conflict of interest : None
Intestinal fibrosis in Crohn’s Disease (CD)

- Fibrotic strictures are the main indication for surgery in CD

Tissue damage • Microbes, drugs, ischemia and oxidative stress

Immune cell infiltration • Secrete cytokines, e.g. TGF-β

Fibroblast activation • Increased extracellular matrix production, • Collagen (I, III & V)

Genotype → Environment → Epigenetics

Healthy

Stricturing

Inflamed
Histone acetylation is an important epigenetic mechanism of gene regulation

- Reduced histone-3 acetylation is a feature of stricturing in CD
- Low levels of histone acetylation associated with high collagen I expression
- VPA treatment increases acetylation and reduces collagen expression

Felice et al. Alimentary pharmacology & therapeutics 41 (1), 26-38
Lewis et al. Journal of Crohn's & colitis 11 (suppl_1), S17
Key questions

(i) How does VPA suppress collagen I expression?
(ii) What drives hypoacetylation in stricturing Crohn’s disease patients?
(iii) Can we identify novel, more specific, therapeutic targets that are regulated by histone acetylation?

Methods:

• Genes regulated by VPA in CCD18Co intestinal fibroblasts were identified by illumina HT12 gene expression array
• The effects of VPA on the target pathways were explored by immunohistochemistry (IHC) and Western Blot.
• VPA target genes were analysed in tissue from Stricturing CD patients by qPCR and IHC.
Suppression of COL1A1 is linked to inhibition of TGFβ1 in VPA treated fibroblasts

- Increased COL1A1
- Decreased COL1A1

CCD-18co intestinal fibroblasts
- PBS control or Valproic acid 5mM, for 48hrs (n=4)
- Validation: CD biopsies

- COL1A1
- TGFβ1
- HNRNPK
- DPP3
- ALDOA
- HCFC1
- TGFB1
- TOB1
- PITRMI
- SMARCD1
VPA suppresses TGFβ1 induced changes in histone acetylation & gene expression

- TGF-β reduces Histone 3 acetylation / VPA reverse this change
- VPA inhibits TGF-β-induced nuclear accumulation of phospho-SMAD3
- VPA inhibits Collagen I secretion from TGF-β treated fibroblast
- Changes in collagen I are mirrored by changes in TGF-β1|1
TGFβ1 and COL1A1 are increased in strictures

- mRNA profiling of strictured intestine (SCD) relative to non-strictured (NSCD) paired-adjacent areas in the same patient (n=7)

Increased expression of HDAC4 and HDAC7 in strictured intestine

<table>
<thead>
<tr>
<th>Class</th>
<th>Gene</th>
<th>NSCD</th>
<th>SCD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>HDAC1</td>
<td>1</td>
<td>0.661</td>
<td>0.342</td>
</tr>
<tr>
<td></td>
<td>HDAC2</td>
<td>1</td>
<td>1.938</td>
<td>0.097</td>
</tr>
<tr>
<td></td>
<td>HDAC3</td>
<td>1</td>
<td>1.028</td>
<td>0.912</td>
</tr>
<tr>
<td></td>
<td>HDAC8</td>
<td>1</td>
<td>1.371</td>
<td>0.268</td>
</tr>
<tr>
<td>Class IIA</td>
<td>HDAC4</td>
<td>1</td>
<td>2.199</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>HDAC5</td>
<td>1</td>
<td>1.436</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td>HDAC7</td>
<td>1</td>
<td>2.757</td>
<td>0.012</td>
</tr>
<tr>
<td>Class IIB</td>
<td>HDAC9</td>
<td>1</td>
<td>2.600</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>HDAC6</td>
<td>1</td>
<td>1.086</td>
<td>0.803</td>
</tr>
<tr>
<td></td>
<td>HDAC10</td>
<td>1</td>
<td>0.770</td>
<td>0.486</td>
</tr>
</tbody>
</table>
Working model

- TGF-β signaling induces histone 3 hypoacetylation
- Leads to increased Collagen I and TGF-β1|1 expression
- Is TGF-β1|1 required to maintain a pro-fibrotic phenotype?
Acknowledgments

Blizard institute, London
Prof. Andrew Silver (project supervisor)
Prof. James O Lindsay (project supervisor)

Royal London Hospital
Prof. Roger Feakins (pathologist)
Endoscopy Unit
Core pathology services

Funders
Bart’s and the London Charity