Intestinal acidification sensed by pH-sensing receptor GPR4 contributes to fibrogenesis

Dr. sc. nat. Bruce Weder, University Hospital Zurich, Switzerland
Copenhagen, March 7, 2019
pH-sensing G protein-coupled receptors

- The family of pH-sensing GPCRs
 - GPR4
 - T-cell death associated gene (TDAG8) or GPR65
 - Ovarian cancer G protein-coupled receptor 1 (OGR1) or GPR68
 - G2A or GPR132
- sense extracellular H^+ → various signaling cascades

Cluster of histidines at the extracellular surface
Hydrogen-bonding between His residues stabilize the receptor

at low pH protons bind to His residues
conformational change of receptor

EC$_{50}$ – pH 7.4
fully activated at pH 6.8
minimally active at pH 7.6 – 7.8

Hypothesis: Gpr4 represents a potential target in intestinal fibrosis?

The proton-activated receptor GPR4 modulates intestinal inflammation

GPR4 deficiency alleviates intestinal inflammation in a mouse model of acute experimental colitis

Gpr4 depletion or inhibition decreases intestinal fibrosis
Positive correlation in mRNA expression between **GPR4**, **αSMA** and **COL1A1**

- **GPR4** comp to **GAPDH**
- **αSMA** comp to **GAPDH**
- **COL1A1** comp to **GAPDH**

(R^2 = 0.880, P < 0.000001)
(R^2 = 0.887, P < 0.000001)
Decreased TGFβ and COL1A1 upon depletion of Gpr4 in chronic DSS-induced colitis

Graphs:
- **Collagen layer thickness [µm]:**
 - WT: 10, 20, 30, 40
 - Gpr4−/−: 10, 20, 30, 40
 - *p = 0.08

- **Hue > 220 area / total tissue area:**
 - WT: 5×10^4, 1×10^5, 2×10^5
 - Gpr4−/−: 5×10^4, 1×10^5, 2×10^5
 - *p = 0.08

- **Hyp [µg/mg]:**
 - WT: 0.0, 0.5, 1.0, 1.5
 - Gpr4−/−: 0.0, 0.5, 1.0, 1.5

Images:
- Colon 20x Sirius red
- Colon 20x Hue > 220

Protein comparison to β-Actin (normalized to WT):
- COL1A1
- VIMENTIN
- TGFβ1

Legend:
- WT
- Gpr4−/−
GPR4 inhibitor prevents pH-induced differentiation of primary human fibroblasts

<table>
<thead>
<tr>
<th></th>
<th>3h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>high</td>
<td>normal</td>
</tr>
<tr>
<td>rTGFβ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH</td>
<td>7.0</td>
<td>6.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th>7.0</th>
<th>6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPR4 inhibited [µM]</td>
<td>-</td>
<td>2.5</td>
</tr>
</tbody>
</table>

GPR4 inhibitor prevents pH-induced differentiation of primary human fibroblasts

DAPI
αSMA
p-SMAD3

GPR4 inhibitor [µM] relative to GAPDH

pH

GPR4 inhibitor [µM] relative to GAPDH

GAPDH

TGFβ1

αSMA

GAPDH

pH

DAPI
αSMA
Acknowledgment

Prof. Dr. Dr. Gerhard Rogler
Prof. Dr. Martin Hausmann
PD Dr. Pedro Ruiz
Dr. Cheryl De Valliere
Dr. Isabelle Frey-Wagner
Katharina Bäbler
Céline Mamie
Silvia Lang
Gastroenterology and Hepatology research group

Prof. Dr. Carsten Wagner
Dr. Yu Wang
Dr. Pedro Imenez Silva

Prof. Dr. Gerard Dijkstra
Tobias van Haafken
Dr. Klaus Seuwen

University Hospital Zurich
University of Zürich
University of Groningen
Novartis

FNS Swiss National Science Foundation
Swiss IBD Cohort Study
Life Science Zurich Graduate School
MiM Microbiology Immunology