A vedolizumab specific four-gene colonic signature accurately predicting future endoscopic remission in patients with inflammatory bowel disease

Bram Verstockt1,2, Sare Verstockt3, Padhmanand Sudhakar2,4,5, Jonas Dehairs6, Helene Blevi2, Gert Van Assche1,2, Séverine Vermeire1,2, Marc Ferrante1,2

1. Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
2. Department of Chronic Diseases Metabolism and Ageing (CHROMETA) – Translational Research for Gastrointestinal disorders, KU Leuven, Leuven, Belgium
3. Department of Human Genetics, Laboratory for Complex Genetics, KU Leuven, Leuven Belgium
4. Earlham Institute, Norwich, United Kingdom
5. Quadram Institute, Norwich, United Kingdom
6. Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, Belgium

14th Congress of ECCO, Copenhagen, 2019
Disclosures

- Speakers fees Abbvie, Ferring Pharmaceuticals, R-biopharm, Takeda and Janssen.
- Consultancy fees Janssen.
- Research grant Pfizer.
Introduction

- **Vedolizumab**, targeting the $\alpha 4\beta 7$ integrin, has proven **efficacy** in both Crohn’s disease and ulcerative colitis during the GEMINI phase III program\(^1,2\)

- **Real-life endoscopic remission** data are **encouraging**, though we still face a **therapeutic gap**\(^3\)

- With the increased therapeutic armamentarium, **predictive biomarkers** are urgently **awaited**.

UC = Mayo endoscopic subscore 0-1
CD = absence of ulcerations
Aims

To identify baseline transcriptomic profiles predicting future endoscopic remission in inflamed colonic biopsies of IBD patients initiating vedolizumab
Methods

Inflamed colonic biopsies → Total RNA → RNA Sequencing Illumina HiSeq 4000 NGS

- UC: Mayo endoscopic score 0-1
- CD: absence of ulcerations

Anti-TNF therapy

Vedolizumab therapy

w0 w2 w6 w14 w22
Differential gene expression

Endoscopic remission

No
Yes

Number of genes differentially expressed

<table>
<thead>
<tr>
<th></th>
<th>Nominal p-value 0.01</th>
<th>FDR correct p-value < 0.25</th>
<th>FDR correct p-value < 0.10</th>
<th>FDR correct p-value < 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of genes</td>
<td>327</td>
<td>44</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
Predictive modelling

31 colonic biopsies

20 discovery
9 NH, 11 MH

11 validation
3 NH, 8 MH

44 diff expressed genes
(FDR 0.25)

Random generalized
linear modelling

4 gene signature

Accuracy | 80.0%
Sensitivity | 81.8%
Specificity | 77.8%
PPV | 81.8%
NPV | 77.8%
LR + | 3.7
LR - | 0.23

Accuracy | 100.0%
Sensitivity | 100.0%
Specificity | 100.0%
PPV | 100.0%
NPV | 100.0%
LR + | ∞
LR - | 0

MH = endoscopic remission
NH = no remission
Predictive modelling – independent validation

RNA-seq validation

- **n = 16**
- **11 NH, 5 MH**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>81.3%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>66.7%</td>
</tr>
<tr>
<td>Specificity</td>
<td>90.0%</td>
</tr>
<tr>
<td>PPV</td>
<td>80.0%</td>
</tr>
<tr>
<td>NPV</td>
<td>81.8%</td>
</tr>
<tr>
<td>LR +</td>
<td>6.67</td>
</tr>
<tr>
<td>LR -</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Microarray validation

- **n = 13 (MILLENIUM)**
- **10 NH, 3 MH**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>76.9%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100.0%</td>
</tr>
<tr>
<td>Specificity</td>
<td>70.0%</td>
</tr>
<tr>
<td>PPV</td>
<td>50.0%</td>
</tr>
<tr>
<td>NPV</td>
<td>100.0%</td>
</tr>
<tr>
<td>LR +</td>
<td>3.3</td>
</tr>
<tr>
<td>LR -</td>
<td>0</td>
</tr>
</tbody>
</table>

MH = endoscopic remission
NH = no remission
Predictive modelling – a vedolizumab specific signal

RNA-seq anti-TNF cohort
n = 24
16 NH, 8 MH

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>58.3%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>75.0%</td>
</tr>
<tr>
<td>Specificity</td>
<td>50.0%</td>
</tr>
<tr>
<td>PPV</td>
<td>42.9%</td>
</tr>
<tr>
<td>NPV</td>
<td>80.0%</td>
</tr>
<tr>
<td>LR +</td>
<td>1.5</td>
</tr>
<tr>
<td>LR -</td>
<td>0.5</td>
</tr>
</tbody>
</table>

MH = endoscopic remission
NH = no remission
Conclusions

• We identified and validated the first vedolizumab-specific predictive 4-gene expression signature

• Allowing treatment guidance in IBD patients with colonic involvement

• Further validation in bigger independent cohorts
Acknowledgments

Leuven IBD group
Kaline Arnouts
Vera Ballet
Helene Blevi
Peter Bossuyt. MD
Clara Caenepeel. MD
Jonathan Cremer
Sofie Coenen
Tamara Coopmans
Brecht Creyns
Nooshin Ardehsir Davani
Gabriele Dragoni. MD
Kathleen Machiels. PhD
Annick Moens. MD
Sophie Organe
João Sabino. MD. PhD
Padmanand Sudhakar. PhD
Nasim Sadat Seyed Tabib
Eline Van de Put
Karen van Hoeve. MD
Bram Verstockt. MD
Willem-Jan Wollants

IBD clinical trials and nurses
Isolde Aerden
Els De Dycker
Patricia Geens
Tine Hermans
Jolien Lefrère
An Outier. MD
Ariane Paps
Karen Rans
Ganel Schops
Karolien Van Den Broeck
Julie Thijs
Ellen Weyts

Laboratory for Therapeutic and Diagnostic Antibodies
Els Brouwers
Griet Compernolle
Iris Detrez. PharmD. PhD.
Erwin Dreesen. PharmD.
Miet Peeters
Rani Soenen
Nathalie Vandenberghe
Debby Thomas. PhD
Sophie Tops
Ann Gils. PharmD. PhD

Laboratory for Complex Genetics
Ho Su Lee. MD. PhD.
Sare Verstockt
Isabelle Cleynen. PhD

Dpt. Colorectal Surgery
André D’Hoore. MD. PhD.
Albert Wolthuis. MD. PhD.

Séverine Vermeire. MD. PhD.
Marc Ferrante. MD. PhD.
Back up
<table>
<thead>
<tr>
<th>Diagnosis, n, %</th>
<th>VEDOLIZUMAB (n=31)</th>
<th>ANTI-TNF COHORT (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulcerative colitis</td>
<td>20 (64.5)</td>
<td>16 (66.7)</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>11 (35.5)</td>
<td>8 (33.3)</td>
</tr>
<tr>
<td>Age, years, (median, IQR)</td>
<td>45.3 (29.6 – 56.3)</td>
<td>36.0 (22.0 – 54.9)</td>
</tr>
<tr>
<td>Gender, n women, %</td>
<td>17 (54.8)</td>
<td>15 (62.5)</td>
</tr>
<tr>
<td>Disease duration, years, (median, IQR)</td>
<td>8.4 (4.0-15.3)</td>
<td>1.9 (0.5 – 7.0)</td>
</tr>
<tr>
<td>Disease location, n, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>0 (0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>L2</td>
<td>2 (18.2)</td>
<td>2 (25.0)</td>
</tr>
<tr>
<td>L3</td>
<td>9 (81.8)</td>
<td>6 (75.0)</td>
</tr>
<tr>
<td>L4</td>
<td>2 (18.2)</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>E1</td>
<td>3 (15.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>E2</td>
<td>10 (50.0)</td>
<td>13 (81.3)</td>
</tr>
<tr>
<td>E3</td>
<td>7 (35.0)</td>
<td>3 (18.7)</td>
</tr>
</tbody>
</table>
Included patients

<table>
<thead>
<tr>
<th>Disease behaviour, n, %</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- B1</td>
<td>6 (54.5)</td>
<td>4 (50.0)</td>
</tr>
<tr>
<td>- B2</td>
<td>3 (27.3)</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td>- B3</td>
<td>2 (18.2)</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>- Perianal</td>
<td>5 (45.5)</td>
<td>2 (45.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steroid use during induction, n, %</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Topical</td>
<td>10 (32.3)</td>
<td>5 (16.1)</td>
</tr>
<tr>
<td>- Systemic</td>
<td>8 (25.8)</td>
<td>7 (22.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous anti-TNF exposure, n, %</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Naïve</td>
<td>10 (32.3)</td>
<td>NA</td>
</tr>
<tr>
<td>- exposed</td>
<td>21 (67.7)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C-reactive protein, mg/L, (median, IQR)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.0 (0.9 – 6.7)</td>
<td>6.3 (1.8 – 17.0)</td>
</tr>
</tbody>
</table>
Differential gene expression – some top hit examples

Claudin 8 expression
in colonic biopsies of IBD patients initiating vedolizumab therapy

Nominal p-value 5.0×10^{-6}
FDR correct p-value 0.02

Grazyme B expression
in colonic biopsies of IBD patients initiating vedolizumab therapy

Nominal p-value 1.0×10^{-4}
FDR correct p-value 0.12
Pathway analysis

- Granulocyte adhesion and diapedesis
- Agranulocyte adhesion and diapedesis

Leukocyte migration
- Leukocyte adhesion to vascular endothelial cell
- Cellular extravasation